
Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

5455                                                                             http://www.webology.org 

 

 
 

Identification Of The Immune Gene Sequences In Plant Species 

Using Machine Learning Techniques

Mukesh Perumala1 , Syeda Sameen Fathima2 , Vasumathi D3 

 
1I/c-AKMU-Formerly ARIS Cell ICAR - Indian Institute of Millets Research (IIMR), GOI, 

Rajendranagar, Hyderabad 500030,TS, India 

 
2(Rtd) Professor & Head  Dept Of Computer Science & Engineering, College of Engineering, Osmania 

University, Hyderabad 

 
3Computer Science and Engineering Jawaharlal Nehru Technological University (JNTU), Kukatpally 

Hyderabad-India in 2011 

 

 

Abstract—Agriculture has a big influence on nations like India, and current research is responsible for 

making this subject very cost efficient and profitable. Despite this, a large number of crops are lost each 

year owing to pathogens such plant diseases. In addition, certain crops have been shown to be particularly 

resistant to certain illnesses. This study presents a unique framework for the identification of immune gene 

sequences for different species in order to apply or impute such gene sequences to the particular plant 

species in order to make them immune to diverse illnesses. Four distinct machine learning techniques are 

proposed in this paper to improve the process of identifying and extracting gene sequences. With a mean 

time of 2.89 ns, the study achieves over 90% accuracy in identifying and extracting immune gene 

sequences.     

Keywords— Intelligent Data Separation, Dataset Normalization, Anomaly Removal, Gene Sequence 

Normalization, Uniqueness Identification, Immune Gene Sequence Identification, Explicit Selection  

 

I. INTRODUCTION  

RNA silencing kills plant viruses. As a counter-defensive, they've constructed silencing suppressor 

proteins. Silence suppressor protein families share little structure and sequence. Sequence-based search 

methods can't annotate these proteins. Machine learning approaches are more efficient and less time-

consuming. Relevant and/or redundant information, class imbalance, and the selection of a suitable learning 

method all affect machine learning performance. P. Jain et al. [1] proposes a new technique to improve the 

prediction performance for RNA silencing suppressors. Using SMOTE's synthetic minority over-sampling 

strategy, a boosted random forest method with a boosted random forest algorithm offers the best results 

with a sensitivity of 98.90%, specificity of 95.30%, overall accuracy of 96%, and an AUC of 0.93 to 0.993. 

(SMOTE). Experiment findings reveal that the proposed strategy gives the best results to yet. Using 

SMOTE, fuzzy rough feature subset selection paired with evolutionary search may achieve these results. 
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Since sequencing prices have dropped, bulk segregation analysis mapping is prevalent in functional 

genomics. Processing that much data is difficult. S. Jia et al. [2] developed MSA based on our maize kernel 

mutants to identify causative genes based on DNA and RNA level variations in mutant pools. Linkage 

disequilibrium and linkage maxima may be observed in these areas. The method compares mutant and 

normal F2 populations and their genetic parents. This reduces data noise and identifies linkage peaks. 

MicroRNAs (miRNAs) regulate posttranslational gene expression. Non-coding, short (18–26 nt), cell-

made. Cross-gene regulation between plants and animals has piqued researchers' interest in regulatory 

RNAs. This research will first examine the role of plant miRNAs in fighting hepatitis B and C viruses, 

which attack the liver. Bioinformatics approaches predicted cross-kingdom interactions of plant miRNAs 

targeting HBV and HCV. This work employed MiR156/157, 166, 169, 172, 390, and 399 to find targets in 

HBV and HCV GenBank sequences. 12 HBC and HCV genes may be targeted by plant miRNAs. This 

work documents plant MiRNAs and their HBV and HCV targets. This initial set of data will help clarify 

the association between plant miRNAs and animal and human pathogens including HBV and HCV, 

according to M. Y. K. Barozai et al [3]. 

The rest of the work is furnished such as in the Section – II, the foundational method for gene sequencing 

are elaborated, in Section – III the current state of arts are elaborated, in Section – IV, the identified research 

problems are discussed, the proposed solutions are elaborated in the Section – V and Section – VI, the 

obtained results and the comparative analysis works are discussed in Section – VII and VIII respectively 

and the research conclusion is presented in the Section – IX.  

II. FUNDAMENTALS OF GENE SEQUENCING   

After setting the context in the previous section of this work, in this section, the fundamental process for 

gene sequencing is realized.  

Assume that, the complete gene dataset, D[], is consisting of species information, SP, gene sequence, 

GS and the disease class, C. Thus, this collection can be presented as,  

 

 [] , [],D SP GS C=    (Eq.1) 

Further, the gene sequence is also a collection and assuming that the length of the gene sequence is n, 

then is also can be represented as,  

 1 2 3[] , , .... n n
GS X X X X=   (Eq.2) 

And, the disease class is also consisting of the number of possible diseases, assuming m, and one label 

as “No Disease”. Thus, this also can be presented as,  

 

 []
m

C K   (Eq.3) 

Where K[] is the set of diseases.  

Further, in order to identify the immune plants, IS[], the no disease labelled records are to be extracted    

as,  
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 [] []
C No Disease

IS D
=

=    (Eq.4) 

  

Further, identification of the immune genes, IG[] can be performed as,  

 

 [] [] []IG IS X D=   (Eq.5) 

Where,  is the selection factor and can be formulated as,  

 [] []
SP SP

IS D =    (Eq.6) 

As, the base line strategy defines to select the immune genes from the no disease class and further search 

the same sequences from the diseased classes in order to identify the immune sequence.  

 

Further, based on these understandings, in the next section of this work, the parallel research outcomes 

are analyzed.  

 

III. LITERATURE REVIEWS  

MicroRNAs (miRNAs or miRs) are small (18-25 nt) yet extremely efficient ndRNAs produced by pre-

miRNA fragmentation (mRNAs). MiRNAs are increasingly employed as biomarkers for genetic diseases, 

therefore their discovery and study are crucial in biology. Despite mounting empirical evidence, new 

ndRNAs derived from longer ncRNAs are likely underestimated, according to recent study. Domain experts 

use Next Generation Sequencing (NGS) data to find and understand miRNAs. In-silico approaches confront 

efficiency, effectiveness, and generalizability concerns. Instead of string-based NGS alignment/analysis, 

our group recommended wavelet-based signal processing to mine ndRNAs. Since this was a novel way for 

mining RNAs, our initial algorithm concentrated on sdRNAs, tRFs, and miRNAs. Because of their 

prominence in the literature and the availability of empirically confirmed databases, we picked these RNAs. 

The prevalence and degree of ndRNA functions from non-miRs, sdRNAs, and tRFs in humans and millions 

of other organisms is unknown. Given the speed of NGS data output, ndRNA extraction and experiments 

must be automated. Our method may be used to more than 500 animals and their ncRNA sequences from 

the NCBI annotation database. Eukaryotic, plants, bacteria, fungus, and protozoa are included. SURFR, a 

real-time user-friendly application, lets experts and aspiring biomedical scientists examine ndRNAs using 

RNA-Seq. Our method can recognise ndRNAs from 30 NGS files, analyse, show, and compare them for 

testing. Users may validate their new findings using NGS files from SRA and ndRNAs from TCGA. This 

supports our platform's efficacy assessment theoretically [4]. 

Long non-coding RNAs (lncRNAs) are widely involved in cell and developmental processes, hence 

several methods have been developed to discover them. Few techniques focus on plant lncRNA 

identification, whereas most are for animal systems. Plant lncRNAs are different from animal lncRNAs. A 

reliable computational method should be used to identify plant lncRNAs. ItLnc-BXE was developed by G. 

Zhang and colleagues [5] as a plant-specific lncRNA identification method. Transcripts are shown by 

gathering and refining sequence features. Training several base learners and integrating them with ensemble 

learning creates an ItLnc-BXE model. ItLnc-BXE models outperform other plant lncRNA identification 
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strategies (AUC>95.91%). Cross-species lncRNA identification tests are also conducted in this work. The 

results reveal that dicots-based and monocots-based models can accurately identify lncRNAs in mosses and 

algae. 

Sigma factor of RNA polymerase holoenzyme regulates gene expression. Once it finds DNA sites, RNA 

polymerase delivers its core enzyme to target genes' upstream regions. Understanding functional genomic 

data requires knowing the promoters of a certain kind of sigma factor. This study created a new method for 

predicting bacterial sigma-54 promoters. The new method combines motif-finding and machine learning 

to analyse sigma-54 promoters. In E. coli benchmark tests, our method can distinguish between sigma-54 

promoters and surrounding or randomly picked DNA sequences. Based on B. Liu et al. [6] and our own 

studies, we can infer that our approach is robust and globally applicable. 

RNAi is a sequence-specific post-transcriptional gene silencing process caused by double-stranded 

RNA. MicroRNAs govern various biological processes in insect development and metamorphosis 

(miRNAs). MicroRNAs and their target genes are being utilised to better understand developmental 

processes. This study sought to identify miRNAs that target Bombyx mori's juvenile hormone epoxide 

hydrolase (JHEH). Juvenile Hormone (JH) is a hydrolytic enzyme that affects development physiology and 

reproductive maturation in Lepidoptera. NCBI utilised JHEH's genomic sequence to identify miRNA 

(NW004582036.1). Only the strongest miRNAs targeting JHEH were selected for gene silencing. RNAi 

may be employed to extend the larval stage of silkworms, resulting in increased silk output, because JH 

degradation signals pupation. In vitro and in vivo studies are underway to employ miRNAs to block JH 

degrading enzyme [7]. 

MicroRNA (miRNA) prediction techniques relying on annotations may miss functioning miRNAs. 

Updated miRNA annotation criteria may improve plant miRNA prediction. Alzahrani and colleagues [8] 

anticipate Arabidopsis thaliana miRNA. They provide a degradome-aided method for finding functional 

miRNAs. This research tested how a new criterion and a more lenient criterion affects miRNA prediction 

systems. This work used degradome sequencing to predict miRNAs. Degradome-assisted miRNA 

prediction exceeds unassisted prediction in this research. This research compared projected miRNAs to 

several parameters and found a previously undiscovered candidate in Arabidopsis thaliana. This article 

introduces PAREfirst, a freeware degradome-aided application. Some miRNAs may have been missed due 

to the strictness of the prior annotation criteria. A degradome-assisted approach with more lenient miRNA 

criteria may improve miRNA predictions. 

MicroRNAs affect post-transcriptional gene regulation (miRNAs). Many machine learning-based 

studies identify miRNAs using miRNA properties. Since plant pre-miRNAs are more variable than animal 

pre-miRNAs, it's harder to tell them apart. This study identifies authentic and fake plant pre-miRNAs. P. 

Ihalagedara et al. [9] presented a machine learning model using 280 compositional, sequence-based, and 

thermodynamic features. 

Predicting lncRNA-protein connections is crucial for understanding fundamental biological processes 

and plant and animal sickness. In recent years, LncRNAs have proliferated (lncRNAs). Little effort has 

been done to predict lncRNA-protein interactions (LPI) to describe plant lncRNAs. LPI-DL predicts plant 

lncRNA-protein interactions using deep learning. We use the optimal blend of k-nucleotide frequency and 

codon-based encoding for the model's input. Recurrent neural networks develop discriminative long-term 

dependencies (RNN). J. S. Wekesa et al. [10] employ RFE-SVM to determine the optimum features and 

connection pruning to sparsely project input sequences' hidden states. Two plant datasets demonstrate LPI-
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superiority over other techniques. The proposed strategy performs best in comparison tests. This study 

improves the accuracy of interaction prediction for future research into lncRNA functions. 

The Smith-Waterman (SW) method permits quick alignment of a small query sequence with a large 

reference sequence "db" in DNA, RNA, and protein sequences. BLAST features a heuristic step of seed 

indexing and an extension phase using Smith-Waterman (SW) sequence comparison. This paper 

recommends using a two-dimensional matrix instead of a sparse one to hold BLAST's seed index. It uses 

our GPU to boost planting performance, lowering processing time by 11.24 percent compared to sequential 

and threaded multi-CPU implementations. We utilised an O-time technique to acquire pattern-key-

matching seeds (1). Hash key length enhances efficiency [11]. 

G. Leitao et al. [12] introduced a real-time warning processing system to forecast abnormal operational 

situations. The recommended method uses a database of critical occurrences. Using rules and projected 

alert sequences, crucial situations are modelled. These situations have occurrence indices to estimate their 

likelihood. The most probable critical scenario is determined by the expected situation's similarity index. 

Simulated oil refinery used to test concept. 

Computational prediction of novel microRNAs in a complete genome requires identifying miRNA 

precursor sequences (pre-miRNA). These sequences are miRNA candidates. The number of well-known 

pre-miRNAs is tiny compared to the hundreds of thousands of probable miRNA candidates, making this 

task a classification problem with a high class-imbalance level. Classical training approaches employed 

well-known pre-miRNAs as positive classes and arbitrarily constructed negative classes. Negative 

examples are much harder to find than positive ones, making it difficult to find adequate training samples 

for unsupervised labelling. G. Stegmayer et al. [13] use machine learning to avoid defining negative 

instances. Clustering unlabeled genome sequences with known miRNA precursors allows quick discovery 

of the best miRNA candidates. Too few positive class labels are addressed by a deep model. Deeper layers 

screen out fewer likely pre-miRNA sequences. Our method correctly predicts new pre-miRNAs in many 

mammals. Our approach is less time-consuming to learn and enables greater visualisation and 

comprehension of results.  

Noncoding RNAs and post-translational changes boost plant growth (PTM). Wu et al. [14] employed 

miRNA-seq and RNA-seq to explore PTM-associated circRNAs in Populus euphratica Oliver 

heteromorphic leaves. Sequencing data and the ceRNA hypothesis were used to build circRNA-miRNA-

mRNA regulatory links in P. euphratica heteromorphic leaves. GO analysis was improved based on 

circRNAs' targets. Antagonizing 51 miRNAs revealed 17 circular RNAs in P.euphratica that may co-

control the development of heteromorphic leaves by protein modification and panning regulation. 

Further, in the next section of this work, the identified problems are presented.  

IV. PROBLEM FORMULATION  

After analysing the recent research outcomes on gene sequencing, the following problems can be identified 

as bottlenecks for further improvements.  

Firstly, the time complexity of the present systems is significantly high due to the nature of the algorithms 

used. Also, added to that, the length of the gene sequences is naturally lengthy, which increases the time 

complexity further. In order to prove the same fact, continuing from the Eq. 2 and 3, assuming that the 

length of the gene sequence is n and the number of diseases are m. These two factors can be formulated as,  
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 ( [])n GS=   (Eq.7) 

 

And,  

 

 ( [])m C=   (Eq.8) 

Where,  is the arbitrary function to calculate the length.  

Henceforth, in Eq. 5, the length of IG[] can be calculated as,  

  

 ( []) .C n m =   (Eq.9) 

Or,  

 2( [])C n =   (Eq.10) 

Naturally, this implies the time complexity as, 2( )O n   

Secondly, the few of the samples in each dataset can incorrect as, they can have the same gene sequences 

as the immune gene sequences and still labelled as diseased plant samples. These samples must be removed 

from the dataset initially in order to reduce the complexity and increase the accuracy of the proposed 

models.  

Further, in the next section of this work, the proposed solutions are furnished using the mathematical 

models.  

V. PROPOSED SOLUTIONS   

After the detailed analysis of the existing systems and research bottlenecks in the previous section of this 

work, in this section the proposed solutions are furnished using the mathematical model.  

 

Continuing from the Eq. 1, the dataset D[] is separated into two parts as K1[] and K2[] with disease infected 

plants and plants with no diseases respectively. Thus, these two can be formulated as,  

 

 1[] []
C No Disease

K D


=    (Eq.11) 

And,  

 

 2[] []
C No Disease

K D
=

=    (Eq.12) 

Further, the reduction of the no disease dataset must be carried out and is identified as UK2[] as,  
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 2[] 2[0.. ] 2[ 1.. ]
2 2

n n
UK K K k=  +   (Eq.13) 

Where the items available only once are compared with the complete no disease dataset to identify the 

unique sequences.  

Further, the disease dataset is compared with the no disease datasets to identify unique matches of the gene 

sequences to build a new set, RK1[], without any data items where the gene sequence matches with the 

immune gene sequence but identified as diseased. The RK1[] can be formulated as,  

 

 
&& 1[ ] 2[ ]

1[] 1[] 1[]
C Disease K GS UK GS

RK K K
= =

= −   (Eq.14) 

 

Further, the immune gene sequences can be identified as,  

 

 
2[ ] 1[ ]

[] 1[]
UK GS RK GS

IG RK


=    (Eq.15) 

Thus, finally, the immune gene sequences can be identified as IG[GS].  

 

Further, based on the proposed mathematical models, in the next section of this work, the proposed 

algorithms are furnished and explained.  

VI. PROPOSED ALGORITHMS AND FRAMEWORK 

Further based on the proposed model, the algorithms are furnished here.  

Firstly, the Intelligent Data Separation Process using Clustering (IDSPC) Algorithm is furnished here.  

Algorithm - I: Intelligent Data Separation 

Process using Clustering (IDSPC) Algorithm 

Input:  

Dataset as D[] 

Output:  

K1[] as Plants with Disease Dataset 

K2[] as Plants with No Disease Dataset 

Process:  

Step - 1. Load the initial dataset as D[] 

Step - 2. For each element in D[] as D[i] 

Step - 3. If D[i].C == "No Disease" 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

5462                                                                             http://www.webology.org 

 

Step - 4. Then, K1[j]=D[i] using Eq. 11 

Step - 5. Else, K2[k]=D[i] using Eq. 12 

Step - 6. Return K1[] and K2[] 

 

Secondly, Dataset Normalization by Anomaly Removal (DNAR) Algorithm is furnished here.  

Algorithm - II: Dataset Normalization by 

Annomaly Removal (DNAR) Algorithm 

Input:  

Disease Dataset as K2[] 

No Disease Dataset as K1[] 

Output:  

Processed Dataset as KK2[] 

Process:  

Step - 1. Load the dataset with disease as 

K2[] 

Step - 2. Load the dataset without disease 

as K1[] 

Step - 3. For each element in K2[] as 

K2[i] 

a. If K1[j].Gene <> K2[i].Gene and 

K2[i].C <> "No Disease" 

b. Then, KK2[] = K2[i] 

Step - 4. Return K2[] 

 

Thirdly, Gene Sequence Normalization by Uniqueness Identification (GSNUI) Algorithm is furnished here.  

Algorithm - III: Gene Sequence Normalization 

by Uniqueness Identification (GSNUI) 

Algorithm 

Input:  

No Disease Dataset as K1[] 

Output:  

Processed Dataset as KK1[] 

Process:  
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Step - 1. Load the No Disease dataset as 

K1[] 

Step - 2. For each element in K1[] as 

K1[i] 

a. If K1[i] <> K1[i+1] 

b. Then, KK1[j] = K1[i] using Eq. 13 

Step - 3. Return KK1[] 

 

Finally, the Immune Gene Sequence Identification using Explicit Selection (IGSIES) Algorithm is 

furnished here.  

Algorithm - IV: Immune Gene Sequence 

Identification using Explicit Selection (IGSIES) 

Algorithm 

Input:  

Processed Dataset as KK1[] 

Processed Dataset as KK2[] 

Output:  

Immune Gene Sequence as GS[] 

Process:  

Step - 1. Load the dataset as KK1[] and 

KK2[] 

Step - 2. For each element in KK1[] as 

KK1[i] 

a. If KK1[i].Gene Contains 

KK2[j].Gene using Eq. 14 

b. Then GS[k] = Gene using Eq. 15 

Step - 3. Return GS[] 

Further the proposed framework is furnished here [Fig – 1].  
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Fig. 1. Proposed Immune Gene Sequence Identification Framework 

Further, the obtained results are discussed in the next section of this work.  

VII. RESULTS AND DISCUSSIONS   

The obtained results are highly satisfactory and are discussed in this section of the work.  

Firstly, the initial dataset characteristics are discussed [Table – 1].  

TABLE I.  DATASET CHARACTERISITCS  

Characteristics Values 

Number of Records 3400 

Number of Attributes 4 

Number of Unique Diseases 11 

Number of Records with Diseases 2420 

Number of Records without Diseases 680 

 

The synthetic dataset is a good distribution of nearly 80% of the data with diseased gene sequences and 

20% complete immune gene sequences, which makes it perfect for this analysis.  

Further, the analysis is visualized fraphically here [Fig – 2].  
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Fig. 2. Initial Dataset Characteristics  

The actual analysis is carried on more than 3400 sequences, however only 10 are listed here for the 

representation purpose.  

Secondly, the disease type, actual gene sequence and the immune gene sequence are furnished [Table – 2].  

TABLE II.  GENE SEUQNECE IDENTIFICATION  

Data

set 

Sequ

ence 

ID 

Disease 

Type 
Actual Gene Sequence Immune Gene Sequence 

Seq – 

1 

Cucumo

viruses 

CTGGAAATCTAAGATGGCTTGCAATCAAAAA

ACTGGACATTATGCGGA 

CTGGAAATCTAAGAT

GGCTTGCAA 

Seq – 

2 

late 

blight 

CATTTGCTTCGACTGAGGCAACCCTCTTGAAA

TGGAAAGTCAAGAACCATAATT 

CATTTGCTTCGACTGA

GGCAACCCTCT 

Seq – 

3 

Speck CTGGAAATCTAAGATGGCTTGCAATCAAAAA

ACTGGACATTATGCGGA 

CTGGAAATCTAAGAT

GGCTTGCAA 

Seq – 

4 

Canker CTTTTTGGCTTCATGGATTCCAAGTAATGCCA

AGGACTGGTATGGAGTTGT 

CTTTTTGGCTTCATGG

ATTCCAAGT 

Seq – 

5 

Mosaic CATTTGCTTCGACTGAGGCAACCCTCTTGAAA

TGGAAAGTCAAGAACCATAATT 

CATTTGCTTCGACTGA

GGCAACCCTCT 

Seq – 

6 

Tobacco 

Streak 

ATGGTTTCTAGAAAAGTAGTCTCACTTCAGTT

TTTCACTTACCTCACA 

ATGGTTTCTAGAAAA

GTAGTCTCA 

Seq – 

7 

Anthrac

nose 

TTTTGATATGCAGAACAAACTTTCTGGGACTC

TTCCAACAAATAGCATATGGAT 

TTTTGATATGCAGAA

CAAACTTTCTGG 

Seq – 

8 

Fusariu

m 

ATTCATATGAAGGTAGATTACGTGATCCAGTT

TCAAGTTGCACTGTGT 

ATTCATATGAAGGTA

GATTACGTG 

Seq – 

9 

late 

blight 

CTGGAAATCTAAGATGGCTTGCAATCAAAAA

ACTGGACATTATGCGGA 

CTGGAAATCTAAGAT

GGCTTGCAA 

Seq – 

10 

Anthrac

nose 

ATGGTTTCTAGAAAAGTAGTCTCACTTCAGTT

TTTCACTTACCTCACA 

ATGGTTTCTAGAAAA

GTAGTCTCA 

 

During the testing process for all the 3400 data items for nearly 89% of the gene sequences the immune 

gene sequences are identified.  

Thirdly, the identified immune gene sequence positions in the actual gene sequence are identified [Table – 

3]. 

TABLE III.  GENE SEUQNECE POSITION IDENTIFICATION  
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Dataset 

Sequence 

ID 

Disease Type Gene Sequence Position 

Seq – 1 Cucumoviruses 24 

Seq – 2 late blight 14 

Seq – 3 Speck 17 

Seq – 4 Canker 24 

Seq – 5 Mosaic 23 

Seq – 6 
Tobacco 

Streak 

15 

Seq – 7 Anthracnose 16 

Seq – 8 Fusarium 17 

Seq – 9 late blight 11 

Seq – 10 Anthracnose 5 

 

These identified positions are the proof that, the immune gene sequences are available in the actual gene 

sequences and further can be imputed in multiple places to make the plant species highly immune to such 

diseases. Further, the results are visualized graphically here [Fig – 3].  

 

Fig. 3. Immune Gene Sequence Positions  

Fourthly, the time complexity for each iteration is carried out [Table – 4].  

TABLE IV.  GENE SEUQNECE POSITION IDENTIFICATION TIME COMPLEXITY  

Dataset Sequence 

ID 
Disease Type Time to Match (ns) 

Seq – 1 Cucumoviruses 1.273 

Seq – 2 late blight 1.537 

Seq – 3 Speck 3.312 

Seq – 4 Canker 3.899 

Seq – 5 Mosaic 4.265 

Seq – 6 Tobacco Streak 2.864 

Seq – 7 Anthracnose 3.707 

Seq – 8 Fusarium 2.221 
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Dataset Sequence 

ID 
Disease Type Time to Match (ns) 

Seq – 9 late blight 1.653 

Seq – 10 Anthracnose 4.146 

 

The average time complexity is nearly 2.89 ns. Further the results are visualized graphically here [Fig – 4].  

 

Fig. 4. Immune Gene Sequence Positions matching Time Analysis   

Further, the obtained results and the proposed framework are compared with the other benchmarked 

research works in the next section of this work.  

VIII. COMPARATIVE ANALYSIS   

The obtained results are also benchmarked against most popular parallel research outcomes and are 

furnished here [Table – 5]. 

TABLE V.  COMPARATIVE ANALYSIS   

Author, Year Model Complexity Mean Time (ns) Extraction Accuracy (%) 

P. Jain et al. 

[1], 2019 

O(n2) 3.96 70.011 

M. V. 

Kasukurthi et 

al. [4], 2021 

O(n2) 4.12 13.500 

P. Ihalagedara 

et al. [9], 2020 

O(n2) 8.22 59.658 

Proposed 

Framework, 

2022 

O(n) 2.89 89.641 

 

Hence, it is natural to realize that the proposed framework has outperformed most the parallel research 

outcomes.  
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Further, in the next section, the research conclusion is presented.  

IX. CONCLUSION AND FUTURE SCOPES  

The primary intension of this research is to build a robust framework for identification of the immune gene 

sequences to make certain plant species immune to specific diseases. During the propose this work firstly 

proposes the Intelligent Data Separation Process using Clustering (IDSPC) Algorithm to cluster the dataset 

into various categories, second proposes the Dataset Normalization by Anomaly Removal (DNAR) 

Algorithm to reduce the anomalies from the diseased sets in the original dataset, thirdly proposes the Gene 

Sequence Normalization by Uniqueness Identification (GSNUI) Algorithm to identify the infected species 

with immune gene  and finally, proposes the Immune Gene Sequence Identification using Explicit Selection 

(IGSIES) Algorithm to identify the immune gene sequences for various specifies for various plant diseases. 

The final outcome of this work is a robust framework with 89.64% accuracy to extract the immune genes.  

The work intend to highlight that, the identified immune genes can be imputed to the plants for making 

the plant specifies immune to various diseases.  
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